🏴
Premium-Modellbau - Portal für Anleitungen
Premium-Modellbau Onlineshop
  • Premium-Modellbau - Portal für Anleitungen
  • Impressum
  • APD
    • APD Übersicht
      • APD PDB360
      • APD PDB500
  • Benewake
    • Benewake Übersicht
      • TF Luna 8m LiDAR
      • TF-Mini S 12m LIDAR
      • TFmini Plus 12m Lidar
      • TF02 Pro 40m LIDAR
      • TF03 100m UART / CAN LIDAR
  • Emax
    • Emax Übersicht
      • Emax Brushless Motoren
      • Emax Servos
  • Feetech
    • Feetech - Übersicht
      • Feetech Servos (PWM)
      • Feetech TTL Linker
      • Feetech FE-URT 1 für SCS / SMS Servos
      • Feetech Smart Control Servos (SCS)
        • SCS15
        • SCS-115
        • SCS-009
        • SCS215
        • SC2115
        • SCS20
        • SCS2332
        • STS3215
      • FT-TIS-5CH
      • FT-SMC-2CH
      • Programmierkarte für FR5311M
  • Frsky
    • Frsky Übersicht
      • Frsky Fernsteuerungen
        • Tandem Serie
          • Tandem X18 / X18S
          • Tandem X20 / X20S
          • Tandem XE
        • Twin Serie
          • Twin X Lite / X Lite S
          • FrSky Twin Lite Pro -Modul
        • Horus Serie
          • Frsky Horus X10 Express / X10S Express
        • Taranis Serie
          • Taranis X9D 2019 / 2019SE
          • Q X7 / X7S ACCESS Version
          • Taranis X9 Lite S
          • Taranis X Lite Pro
      • Frsky Empfänger
        • 2.4Ghz ACCST D16 Empfänger
          • R-XSR
          • XSR-SIM Simulator Dongle
          • X8R
        • 2.4 GHz & 868Mhz Tandem TD Empfänger
          • TD MX
          • TD R6
          • TD R10
          • TD R18
        • 2.4Ghz Twin TW Empfänger
          • Twin TW MX Empfänger
          • Twin TW R6 Empfänger
          • Twin TW GR6 Empfänger
        • 2.4Ghz Archer ACCESS Empfänger
          • Archer M+
          • Archer RS
          • Archer R4
          • Archer R6
          • Archer R8 Pro
          • Archer R10 Pro
          • Archer SR6
          • Archer SR8 Pro
          • Archer SR10 Pro
          • Archer GR6
          • Archer GR8
          • Frsky Archer Serie - How to
        • 2.4Ghz Archer Plus - ACCST D16 + ACCESS Empfänger
          • Archer Plus RS Mini
          • Archer Plus R6
          • Archer Plus R8
          • Archer Plus R10+
          • Archer Plus GR6
          • Archer Plus GR8
          • Archer Plus SR10+
      • Frsky R9 868Mhz Long Range Serie
        • FrSKY R9M Lite Pro - Sendemodul
        • FrSKY R9M 2019 ACCESS Sendemodul
        • FrSKY R9 MX OTA Access Empfänger
        • FrSKY R9 SX OTA Access Empfänger
        • FrSKY Empfänger R9 STAB OTA
      • Frsky Smart Port Sensoren und Zubehör
        • RB-10 Redundancy Bus Adapter
        • FLVS ADV (mit / ohne) Display
        • FAS 7 ADV Lite - Stromstärke Sensor
        • FAS 40 ADV - Stromstärke Sensor
        • FAS 100 ADV - Stromstärke Sensor
        • ASS 70 ADV / ASS100 ADV - Airspeed Sensor
        • GPS ADV
        • Vario ADV
        • PS30 ADV
        • RPMS - Drehzahl und Temperatur Sensor
        • Frsky S.Port Airlink S Adapter
        • FrSKY STK Adapter
        • FrSKY Servo Channel Changer
        • FrSKY SBUS zu PWM Decoder
        • FrSky F.PORT FP2CH4 / FP2CH6 / FP2CH8 Adapter
        • FrSky S2F.PORT 2.0 Adapter Konverter
        • Tipps & Tricks zu Smart Port Sensoren
      • Frsky Tipps & Tricks + FAQ
        • Ethos Betriebssystem
          • Ethos Suite
          • Neues Modell in Ethos anlegen
          • Empfänger binden und registrieren in Ethos
          • Ethos Reichenweitentest
          • Ethos Failsafe Einstellungen
      • Frsky - Sonstige Produkte und Zubehörartikel
        • FrSKY M7 Gimbal
        • FrSKY M9 Gimbal
        • Frsky M9-R Gimbal
        • FrSky Blheli32 USB Dongle
        • FrSky Neuron 8A BEC
        • Frsky Neuron 40S / 60S Brushless Regler
        • FrSky Xact Flächenservo HV5611
        • FrSky Xact Flächenservo HV5612
      • Frsky Archiv alte Produkte
  • Gremsy
    • Gremsy Übersicht
      • Pixy Gimbal Serie
        • Gremsy PIXY U Gimbal
        • Gremsy Pixy F Gimbal
        • Gremsy Pixy SM
        • Gremsy PIXY WP
      • S1 V3 / T3 / T7 Gimbal Serie
        • Gremsy S1 V3 Gimbal
        • Gremsy T3 Gimbal
        • Gremsy T7 Gimbal
      • Mio Gimbal
        • Gremsy MIO Gimbal
      • Zubehörartikel
        • Damping Plate Pro 2.0
        • Gremsy gPort
  • Hex Technology
    • Hex Technology Übersicht
      • GPS Module & Zubehör
        • Here 3 / Here 3+ GPS Modul
          • Here 3 Link zur Hersteller Doku
        • Here+V2 RTK Basis
          • Here+ V2 Link zur Hersteller Doku
      • Flightcontroller & Zubehör
        • Cube Orange / Orange+ Flightcontroller - Anleitung und Übersicht
        • Cube Flightcontroller Hersteller Übersicht und Architektur
        • Installation von Software und Firmware
        • Carrier Boards für Cube Flightcontroller
          • Kore Carrier Board
            • Kore Carrier Board 3D Modell Gehäuse
          • Mini Carrier Board
            • Hersteller Doku mit allen Pinouts
          • ADS-B IN Carrier Board
          • Airbot Systems Mini Carrier Board
      • EDU Frame Serie
        • EDU 450 V2
        • EDU 650
      • Herelink HD Video System und Fernsteuerung
        • Herelink User Guides in der Hersteller Doku
        • Herelink Hersteller Übersichtsseite
        • Herelink Hersteller Quickstart Guide
        • Herelink Hersteller FAQ
      • Here Flow
      • Sonstige Produkte
        • Power Brick Mini- Power Modul für The Cube (Pixhawk 2.1)
        • Hexsoon 40A PDB inkl. 5V und 12V BEC
        • Cube ID
          • Hex HX4-06252 - Cube ID
          • Hex HX4-06253 - Cube ID CAN
          • HEX Cube ID Hersteller Doku
      • Sonstige Downloads und Informationen
        • 3D Modelle
  • Holybro
    • Holybro - Übersicht
      • Holybro ARF & RTF Sets
        • X500 V2 ARF Set Quadcopter - 30125
        • QAV250 ARF Set Quadcopter - 30149
        • QAV250 Basic Set Pix32 V6 + 433Mhz Telemetrie Set Quadcopter - 30150
        • PX4 Vision Dev Kit V1.5 - 30157
      • Holybro Flightcontroller
        • Pixhawk 6C Flightcontroller
          • Pixhawk 6C (Kunststoff Gehäuse) Standard Set - 20183
          • Pixhawk 6C (Alu Gehäuse) Standard Set - 20179
          • Pixhawk 6C Link zur Hersteller Doku
        • Pixhawk 6C Mini Flightcontroller
          • Pixhawk 6C Mini Version - 11062
          • Pixhawk 6C Mini Link zur Hersteller Doku
        • Pixhawk 6X Flightcontroller Serie
          • Pixhawk 6x Standard Set - 20172
          • Pixhawk 6X Link zur Hersteller Doku
      • Holybro GPS Module
        • M8 GPS Serie
          • GPS Modul NEO M8N - 12012
          • Nano Ublox M8 5883 GPS Module - 12023
          • Holybro M8N GPS Module Hersteller Doku
          • 2nd GPS Modul NEO M8N - 12014
        • M9 GPS Serie
          • GPS Modul M9N - 12027
          • CAN GPS Modul M9N - 12032
          • 2nd GPS Modul M9N - 12029
          • Holybro M9N GPS Module Hersteller Doku
        • F9P RTK Serie
          • H-RTK F9P Rover Lite GPS RTK Module - 12017
          • F9P Helical GPS RTK Modul - 12018
          • F9P Base GPS RTK Modul - 12022
          • F9P Drone CAN Helical GPS RTK Modul - 12037
          • F9P Drone CAN Rover Lite GPS RTK Modul 27cm - 12034
          • F9P Drone CAN Rover Lite GPS RTK Modul 42cm - 12035
          • GPS UART zu USB Converter - 18060
          • Holybro F9P GPS Module Hersteller Doku
        • Unicore UM982
          • Unicore UM982 Dual Antennen GPS RTK Modul - 12036
          • Holybro UM982 GPS Module Hersteller Doku
      • Holybro CAN Module
        • CAN Hub 2S-12S 27cm Kabellänge - 18085
        • CAN Hub 2S-12S 42cm Kabellänge - 18086
        • CAN RM3100 Kompass 27cm Kabellänge - 18088
        • CAN RM3100 Kompass 42cm Kabellänge - 18098
      • Holybro Power Module
        • PM02 V3 Power Module - 15010
        • PM03D Power Module und PDB - 15017
        • PM06 V2 Micro Power Module - 15019
        • PM07 Power Module und PDB - 15008
        • Holybro Power Module Hersteller Doku
      • Holybro Sensoren
        • ST VL53L1X Lidar - 19004
        • Digitaler Air Speed Sensor - 19003
        • Holybro PX4FLOW KIT V1.31 optischer Flow Sensor Kamera - 19001
        • Telemetrie Set 433Mhz - 17012
      • Holybro ESCs und Motoren
        • Tekko32 F4 45A BLHeli32 ESC
        • 20A BLheli ESC - 520041 / 520053 / 520081
        • X500 V2 Brushless Motor 2216 920kv - 520085 / 520086
      • Holybro Sonstige Artikel
        • Holybro Micro OSD V2 - 13013
  • Lightware
    • Lightware LIDAR Übersicht
      • Lightware SF000/B 50m
      • Lightware LW20/C 100m
      • Lightware SF11/C 100m
      • Lightware SF20/C 100m
      • Lightware SF30/D 200m
      • Lightware SF45/B 320° 50m LiDAR
  • Matek
    • Matek Systems - Übersicht
      • Matek Flightcontroller
        • H743-Slim
        • H743-Mini
        • H743-WLITE
        • H743-WING-V3
        • F405-miniTE
        • F405-TE
        • F405-WMN
        • F405-VTOL
      • Matek GPS Module
        • M8Q 5883 - GPS und Kompass Modul
        • M10-5883 - GPS und Kompass Modul
        • M10Q-5883 GPS und Kompass Modul
        • SAM-M10Q GPS Modul
        • Matek M10 L4 3100 - GPS & Kompass Modul + CAN BUS
      • Matek Sensoren
        • 3901-L0X Optical Flow und Lidar Sensor
        • HCS-150A - Hall Effekt Sensor
        • ASPD-4525 - Digital AIRSPEED SENSOR
        • ASPD-DLVR - Airspeed Sensor
        • AP_PERIPH CAN NODE L431
        • AP_PERIPH CAN NODE L431 PWM
        • AP_PERIPH CAN NODE CAN-L4-BM
        • AP_PERIPH CAN NODE RM3100
      • Matek BECs & PDBs
        • MBEC2A
        • mbec6S
        • mBEC12S
        • BEC12S PRO
        • PM12S-3
        • SVPDB-8S
        • U4A2P Duo BEC
        • PDB-HEX
        • FCHUB-W
        • FCHUB-12S
      • Matek LEDs
        • RGB 5050 LED Boards
        • 2812 Ctrl - Controller
      • Matek sonstiges Zubehör
        • DBuz5V - Buzzer
        • USB-BZ-PAS
        • XT60-TVS - Voltage Spike Filter
        • VB2A5V - Voltage Booster
  • Mauch
    • Mauch Übersicht
      • Mauch PL-Serie Sensoren
        • PL-100 Sensor Board -Mauch 002
        • PL-200 Sensor Board - Mauch 003
        • PL-200 Sensor Board - Mauch 004
        • PL-250 Sensor Board - Mauch 005
        • Sensor Hub X2 V2 - Mauch 010
      • Mauch PL-Serie BECs
        • PL 2-6S BEC / 1x 5.3V-3A - Mauch 015
        • PL 2-6S BEC / 2x 5.3V-3A - Mauch 016
        • PL 4-6S BEC / 2x 5.3V-3A + 1x 12V-3A - Mauch 017
        • PL 4-14S HYB-BEC / 1x5.3V - Mauch 021
        • PL 4-14S HYB-BEC / 2x5.3V - Mauch 022
        • PL 4-14S HYB-BEC / 2x5.3V + 1x12.0V - Mauch 024
        • PL 4-14S HYB-BEC / 2x5.3V + 1x5.0V + 1x12.0V - Mauch 025
      • Mauch Power-Cube Serie
        • Power-Cube 2 - V3 / 5.3V / 5.3V / 10A - Mauch 052
        • Power-Cube 3 - V3 / 5.3V / 5.3V / 12V / 10A - Mauch 053
        • Power-Cube 4 - V3 / 5.3V / 5.3V / 5.3V / 12V / 10A - Mauch 054
        • PC 2x15 Ideal Diode - Batt Share für Mauch Power Cube Serie - Mauch-058
      • Mauch Backup BECs & sonstiges BECs
        • Mauch 082 - 2-6S BEC 5,35V 3A
        • Mauch 083 - 2-6S Backup BEC für Cube Flightcontroller
        • Mauch 085 4-14S HYB-BEC Backup BEC für Cube Flightcontroller
        • Mauch 090 - 4-14S BEC 12V 3A
  • OMPHobby
    • OMPHobby Übersichtsseite
      • ZMO PRO VTOL FPV ARF Combo - OSFP-P0001
      • ZMO PRO VTOL FPV RTF Combo 1 - SIYI MK15 - OSFP-P0002
      • ZMO PRO VTOL FPV RTF Combo 2 - SIYI HM30 - OSFP-P0003
  • PMT
    • PMT Übersicht
      • PMT Getriebemotoren
      • PMT Brushless Motoren
  • RFD
    • RFD - RFDesign - Übersicht
      • RFD868x-EU Modem 868Mhz
      • RFD868ux-EU Mini Modem 868Mhz
  • SIYI
    • SIYI Übersicht
      • SIYI Gimbals
        • SIYI ZR10 Gimbal
        • SIYI ZR30 Gimbal
        • SIYI ZT30 Wärmebild Gimbal
        • SIYI A8 Gimbal
        • SIYI A2 Gimbal
      • SIYI Fernsteuerungen + Downlinks
        • SIYI MK15 Fernsteuerung & Groundstation Agriculture Dual FPV Combo -SYMK15 DF
        • SIYI MK15 Fernsteuerung & Groundstation Enterprise FPV Combo - SYMK15 EF
        • SIYI MK15 Fernsteuerung & Groundstation Enterprise HDMI Combo - SYMK15 HM
        • SIYI MK15 & MK15 Fernsteuerung & Groundstation Dual Link Combo - SYMK15 DR
        • SIYI MK15 & HM30 Fernsteuerung & Groundstation Dual Link Combo - SYMK15 HM30 DL
        • SIYI MK32 Fernsteuerung & Groundstation Enterprise HDMI Combo
        • SIYI MK32 Fernsteuerung & Groundstation Enterprise Combo
        • SIYI MK32 Fernsteuerung & Groundstation Enterprise DUAL Link Combo - SYMK32-DR
        • SIYI MK32 + MK15 Fernsteuerung & Groundstation Enterprise DUAL Link Combo
        • SIYI MK32 + HM30 Fernsteuerung & Groundstation Enterprise DUAL Link Combo
        • SIYI HM30 Groundstation & FULLHD Downlink - Fly More Combo
        • SIYI Zubehörartikel (für HM30 / MK15)
          • Air Units
            • SIYI Air Unit Solo - MK15-AU
            • SIYI Air Unit Dual Link- HM30-AU-DL
          • SIYI 4S-18S BEC Modul
          • Dual FPV Camera Hub - MK15-DCH
          • HDMI Adapter / Converter
            • Air Unit HDMI Input Converter - AU-HDMI-IN
            • Ground Unit HDMI Output Converter - GU-HDMI-OUT
          • IP Kameras
            • IP FPV Kamera - IPCAM-MK15
            • IP67 Kamera mit Scheinwerfer - IP67CAM-MK15
            • R1 / R1M IP HD Kamera mit Aufnahmefunktion
  • Tarot
    • Tarot Übersicht
      • Tarot Gimbals
        • Tarot TL3T05 Gimbal
        • Tarot TL3T06 Gimbal
        • Tarot TL03FLIR FLIR Gimbal
      • Tarot TL2955 Brushless Motor
      • Tarot Brushless Motor
      • Tarot TL2961 02 Abwurfvorrichtung / Ausklinkvorrichtung
      • Fahrwerke 5V (TL65B43 /TL65B44
      • Fahrwerke mit TL8X002 Controller (TL96030, XS690 TL69A02, TL4N002, TL8X021,...)
  • T-Motor
    • T-Motor Übersicht
      • T-Motor Brushless Regler Übersicht
        • T-Motor 4D ESC F3P 16A
        • T-Motor Air Serie Brushless Regler (15A, 20A, 40A)
        • T-Motor AT Serie Brushless Regler
        • T-Motor AT 115A Brushless Regler
        • F35A V2 FPV Brushless Regler 35A
        • T Motor 55A 4in1 32bit BLHeli Regler
        • T-Motor F66 Mini 66A 4in1 32bit BLHeli Regler
        • T-Motor F60A 60A 4in1 BLHeli 32bit Regler
        • T-Motor CINE55A Cine 55 8S 8in1 BLHeli 32bit
        • T-Motor Flame Brushless Regler
          • T-Motor Flame 60A HV
          • T-Motor Flame 70A
          • T-Motor Flame 80A HV V2.0
          • T-Motor Flame 100A
          • T-Motor FLAME 180A 14S V2.0
      • T-Motor Gimbal Motoren Übersicht
        • GB Gimbal Brushless Außenläufer Motor Serie
        • GL Gimbal Brushless Außlenäufer Motor Serie
        • G Gimbal Brushless Innenläufer Motor Serie
        • RI Brushless Innenläufer Motoren Serie
        • R Brushless Außenläufer Motor Serie
      • T-Motor Alpha Serie
        • T-Motor Alpha Linker V2
        • T-Motor Alpha ESC Brushles Regler
      • T-Motor Cube Mars AK Motoren Serie
        • AK60-6 V1.1 80kv
        • AK70-10 100kv
        • AK80-6 100kv
        • AK80-9 100kv
        • AK80-64 80kv
        • AK10-9 V1.1 100kv
        • AK10-9 V2.0 60kv
        • Rubik-Link-V2
      • T-Motor Brushless Motoren
Powered by GitBook
On this page
  • Link zum Premium-Modellbau Shop
  • Here 3 GPS Module
  • Here 3+ GPS Modul
  • Bundle aus Here 3+ und Here+ RTK Basis
  • GPS Mast als Zubehör / Ersatzteil
  • Beschreibung Here3+ :
  • Anleitung mit Integrationstipps:
  1. Hex Technology
  2. Hex Technology Übersicht
  3. GPS Module & Zubehör

Here 3 / Here 3+ GPS Modul

Here 3 / Here3+ GPS Modul Übersichtsseite

PreviousGPS Module & ZubehörNextHere+V2 RTK Basis

Last updated 2 years ago

Link zum Premium-Modellbau Shop

Here 3 GPS Module

Here 3+ GPS Modul

Bundle aus Here 3+ und Here+ RTK Basis

GPS Mast als Zubehör / Ersatzteil

Beschreibung Here3+ :

Das Here 3+ ist das neue GNSS Modul (Sept 2022) von Hex Technology welches als Highlight über einen UBlox M8P-2 Chip verfügt. Als weitere Features sind die verbesserten LEDs, verbesserter Staubschutz sowie die Nutzung des CAN Bus zur Anbindung nennen.

Das Here3+ Modul verfügt über zwei CAN Anschlüsse und wird mit einem zukünftigen Firmware-Update auch einen DUAL CAN Modus unterstützen.

Es handelt sich um die neue Bundle Version von Here 3+ (Sept 2022) und passendem GPS Mast (iStand)

Das Here 3+ Version verwendet den Ublox M8P-2 Chip, welcher mit einer entsprechenden Basis (z.B. Here+ Base) auch RTK unterstützt.

Anleitung mit Integrationstipps:

Here 3/3+ GPS is a Cost-efficient GNSS system that supports RTK mode. Positioning accuracy down to centimetre-level in an ideal environment. Improved dust and water resistance over the Here+ (Not guaranteed to be water-proof).High data rate, upgradeability, noise immunity, and real-time features from the DroneCAN protocol, with Here3+ now moving to DroneCAN 8Mbit bus speed. Here 3 is Equipped with the STM32F302 processor while the Here3+ jumps to the Dual core STM32H757 running at 400MHz with 2MByte Flash, and 1MByte RAM. Supports future firmware updates. Support from ground control software. Future updates will be available from Mission Planner. Built-in Inertial Measurement Unit (compass, gyroscope, and accelerometer), for advanced navigation needs.

Model

Here 3

Here3+

Receiver Type

u-blox high precision GNSS modules (M8P-2)

u-blox high precision GNSS modules (M8P-2)

Satellite Constellation

GPS L1C/A, GLONASS L1OF, BeiDou B1I

GPS L1C/A, GLONASS L1OF, BeiDou B1I

Positioning accuracy

3D FIX: 2.5 m / RTK: 0.025 m

3D FIX: 2.5 m / RTK: 0.025 m

Processor

STM32F302

STM32H757

IMU sensor

ICM20948

ICM42688,RM3100

Navigation Update Rate

8 hz

8 hz

Communication Protocol

DroneCAN 1Mbit/s

DroneCAN 8Mbit/s

Operating Temperature

-40℃ to 85℃

-40℃ to 85℃

Dimension

68mmx68mmx16mm

68mmx68mmx16mm

Weight

48.8g

51.8g

Pin

Definition

Cable color

1

VCC_5V

red

2

CAN_H

brown

3

CAN_L

orange

4

GND

black

Pin

Definition

Cable color

1

VCC_5V

grey

2

CAN_H

blue

3

CAN_L

white

4

GND

green

Note: Current firmware only support CAN 1 ,CAN 2 is not supported. Dual CAN will be enabled in a future firmware update.

1. Using Ardupilot Firmware:

Using one Here 3 / Here 3+:

Connect the 4 pin CAN cable connector to CAN1 or CAN2 port on the flight controller.

Power the flight controller and connect it to Mission Planner. Go to "Config/Tuning > Full Parameter List" and modify the following parameters:

CAN_D1_PROTOCOL: 1 set virtual driver of CAN1 to DRONECAN

CAN_D2_PROTOCOL: 1 set virtual driver of CAN 2 to DRONECAN

CAN_P1_DRIVER: 1 set this parameter to enable CAN 1 bus

CAN_P2_DRIVER: 1 set this parameter to enable CAN 2 bus

GPS_TYPE: 9 set the communication protal type of GPS 1 to DRONECAN

NTF_LED_TYPES: 231 Set to DRONECAN for LED type

There is no external safety switch. Set BRD_SAFETYENABLE as 0 to disable safety switch, or connect an physical external safety switch

Click "Write Params" when done. CAN functions will be available after rebooting the flight controller.

Using two Here 3 / Here 3+:

As the document is written,The firmware used for flight control is ArduCopter 4.1.5, which automatically allocate 2 node ID for Here 3 / Here 3+,you can perform following operation directly.

Old firmware might not be able to automatically allocate 2 node ID . Need to use latest firmware and perform following operation to manually assigning node ID.

Connect two Here 3 / Here 3+ CAN cable to the CAN1 and CAN 2 port of the flight controller

Power up flight controller and connect to Mission Planner. Go to "Config/Tuning > Full Parameter List" and modify the following parameters:

CAN_D1_PROTOCOL: 1 set virtual driver of CAN1 to DRONECAN

CAN_D2_PROTOCOL: 1 set virtual driver of CAN 2 to DRONECAN

CAN_P1_DRIVER: 1 set this parameter to enable CAN 1 bus

CAN_P2_DRIVER: 1 set this parameter to enable CAN 2 bus

GPS_TYPE: 9 set the communication protocol type of GPS 1 to DRONECAN

GPS_TYPE2:9 set the communication protocol type of GPS 2 to DRONECAN

NTF_LED_TYPES: 231 Set to DRONECAN for LED type

There is no external safety switch on Here 3 / Here 3+. You can set BRD_SAFETYENABLE to 0 to disable safety switch, or connect an physical external safety switch

Click "Write Params" when done. CAN functions will be available after rebooting the flight controller.

Compass Setting(Using the latest version of firmware):

As the document is written,The firmware used for flight control is ArduCopter 4.1.5

When using Cube Black , from top to bottom are compass 1 ,2 and 3 .When using Cube Orange ,from top to bottom are compass 1 and 2. The external compass will be displayed in BusType list as UAVCAN. Usually need to set the external compass to NO 1 compass , if the external compass is not NO 1 compass, please do the following operation.

If you want to use CAN external compass as the NO 1 compass ,please move the UAVCAN compass to the top.

Select the compass you want to use (the default is normally ok).Then click "Start" to begin calibrate the compass,follow the process until the calibration is done .

As the document is written,The firmware used for flight control is PX4 V1.12.3, which automatically allocate 2 node ID ,you can perform following operation directly.

Old firmware might not be able to automatically allocate CAN node ID . Need to manually assigning node ID Here 3 / Here 3+ with latest firmware and perform following operation

Load PX4 firmware into the autopilot. Connect the 4pin CAN connector from Here3 to CAN1 or CAN2 port on flight control.

Connect to the flight control and set the parameter "UAVCAN_ENABLE" to "Sensor Automatic Config".

3. LED defination(with ardupilot firmware):

Flashing red and blue: Initializing gyroscopes. Hold the vehicle still and level while it initializes the sensors.

Flashing blue: Disarmed, no GPS lock found.

Solid blue: Armed with no GPS lock.

Flashing green: Disarmed (ready to arm), GPS lock acquired.

Fast Flashing green: Same as above but GPS is using SBAS.

Solid green - with single long tone at the time of arming: Armed, GPS lock acquired. Ready to fly.

Double flashing yellow: Failing pre-arm checks (system refuses to arm). Please check the pre-arm error message.

Single Flashing yellow: Radio failsafe activated.

Flashing yellow - with quick beeping tone: Battery failsafe activated.

Flashing yellow and blue - with high-high-high-low tone sequence (dah-dah-dah-doh): GPS glitch or GPS failsafe activated.

Flashing red and yellow - with rising tone: EKF or Inertial Nav failure

Flashing purple and yellow: Barometer glitched

Solid Red: Error. Usually due to cannot detect SD card (please try to re-plug or replace SD card), MTD device, or IMU sensors. Analysis can be found in BOOT.txt in SD card.

Solid Red with SOS tone sequence : SD Card missing (or other SD error like bad format etc.)

Not lighting up: No firmware detected or firmware corrupted.

1. Base/Rover Survey by Mission Planner

This part of the tutorial uses Mission Planner ground software and Arducopter-4.1.5 flight firmware for operating instructions. RTK mode requires a base station. The following tutorial Use "Here+" base stations as an example. Users can also use other uBlox M8P/F9P base stations (such as HerePro, etc.), or use the local wireless RTK correction service.

To use Here 3 / Here 3+ on a UAV, you need the following hardware: Computer, telemetry modules, *Here 3 / Here 3+ , Base Antenna, Base, Tripod(Stand).

Before starting to use, please make sure that the hardware connection is correct:

Ground side: Connect base antenna to base station, then connect the base station module to computer through USB port; Telemetry module is connected to another USB port of the same computer. UAV side: Connect Here 3 / Here 3+ to CAN interface , telemetry module to the TELEM interface on flight control.

Placing the RTK Antenna is very important for getting precise RTK positioning

Normal GPS positioning,you only have to places the device near a window in your room and it would provide you a GPS location over a period of time. But that's not enough for RTK. For the working environment of RTK, there are special requirements on antenna placement, which are much stricter than GPS.

The best environment forthe base and rover antenna is a clear view of the sky that is 30 degrees above the horizon. RTK antenna can be elevated but make sure that there are no obstacles around, such as buildings, trees, cars, and etc

Example of a bad environment: indoors, urban area, forest, near the ground.

Example of a good environment: Open spaces, peak of the mountains, roof of the buildings.

Do not place the antenna near electronic devices, as high power electronic devices nearby may affect the radio frequency noise of GPS signal. Examples are mobile phone base stations, high voltage transformers, and etc.

Please place the base station in an outdoor environment with sufficient sky coverage to obtain a good satellite signal.

Place the base station on a stable and elevated platform, such as a tripod.

Base Module Setting using Mission Planner

Start with a base module setup first. During the base station setup, the rover and the UAV do not need to be turned on.

Open the Mission Planner ground station software on your computer and go to the "initial setup → Optional Hardware → RTK/GPS Inject". You will see the following page:

Select the correct base module com port in the top left corner and click connect. In the SurveyIn Acc section, enter the absolute geographic accuracy that you expect your Here+ base station to achieve. In the Time column, enter the minimum survey time you expect. Click on Restart, the ground station will transfer the data you have entered to the Here3 base module, the base module will start a new round of surveying. You will see the following page:

During the survey process, the right box will show the current survey status:

The Position is invalid: The base station has not yet reached a valid location;

In Progress: The survey is still in progress;

Duration: The number of seconds that the current surveying task has been executed;

Observation: the number of observations acquired;

Current Acc: Absolute geographic accuracy that the current base station can achieve;

The Green bar at the lower part of the Mission Planner page shows the current satellites being detected and the signal strength related to each satellite. At least eight or more satellite signals need to be guaranteed to exceed the red line ( Only when the satellite signal exceeds the red line is the effective number of satellites).

The base station needs a certain amount of time to meet the accuracy requirements of your input. Testing shows that in an open area without shelter, to achieve the absolute accuracy of 2m takes a few minutes; to reach the absolute accuracy of less than 30cm takes around an hour; to reach the accuracy of 10cm takes a few hours.

It should be noted that the absolute geographic accuracy of the base station here will affect the absolute geographic accuracy of the rover module without affecting the relative accuracy between the base station and rover. If your application does not require UAV with high absolute geographic accuracy, you do not need to set the base station's precision too high,which resulting in long survey time.

Even if the accuracy of the base station is 1.5 to 2 m, the position accuracy of the rover module relative to the base station can still reach the centimeter level.

After the survey is complete, the Mission Planner will display the following page:

In the RTCM box it shows that the base status indicator is green and both the GPS and Glonass satellite systems are green (if you want to change the satellite system, refer to the following section). The box on the right says "Position is valid".

To store the current location in the Mission Planner: Click "Save Current Pos", enter a name in the dialogue box, and click "OK". As shown below, you can see your saved location in the list. Click the "Use" button for the location you saved. The base station will enter the fixed mode and the status will show "Using FixedLLA". In the future, if you set the base station in the same location, you do not need to conduct the survey again, just click the "Use" button that corresponds to the location you have saved.

Rover Module and Flight Controller Setup

After the base station is set up, you can turn on the UAV. Using the same telemetry module to connect Mission Planner, the base station data will be transmitted through the telemetry module to the Here3 rover module on the UAV. In the Mission Planner main page, you can see the current GPS status displayed as RTK Float / RTK Fixed / 3D RTK, indicating that the positioning of the UAV has entered the RTK mode. RTK Float is a floating-point solution; RTK Fixed is a fixed solution. RTK Fixed mode has higher accuracy and requires better signal strength. 3D RTK is unified saying of RTK Float / RTK in the Mission Planner Chinese version

2. Single Base to Multiple Rovers **

There are 2 methods to do this: 1) Use 1 telemetry to multiple telemetry broadcasting ;or 2) Use multiple 1 to 1 telemetry modules with USB hub

Ground station configuration: connect all telemetry modules to the computer via USB hub. Open Mission Planner to locate the base then connect it with flight controllers. Select AUTO connecting as shown below. All recognized flight controllers on the ports will be connected. You may select the UAV form the dropdown list below:

If you connected the UAVs with 1 telemetry module, they should share the same COM port:

Use Cube Black to change ID :

Connect each Here 3 / Here 3+ 4 Pin CAN cable to the CAN 1 port of the flight controller(one at a time), and conduct the following procedure. Select "install firmware" from Mission Planner and load the latest copter and plane firmware.

After successful installed firmware, change baud to 115200, and click connect. Then go to "Config/Tuning > Full Parameter List" and modify the following parameters:

CAN_D1_PROTOCOL:1 set virtual driver of CAN 1 to DRONECAN

CAN_D2_PROTOCOL:1 set virtual driver of CAN 2 to DRONECAN

After successful loading, select the autopilot SLCAN COM port with 115200 baud rate and Connect and then Go to "Initial Setup - Optional Hardware - DRONECAN", click "SLCan Mode CAN1".

When the device settings of Here3 pop-up, click "Parameters" from the right.

In parameter setting page, change uavcan.node_id to 0-125. Click before entering a value. Then, click "Commit Params" to save the changes and completed manual CAN id allocation.

Use Cube Orange to change ID:

Connect each Here 3 / Here 3+ 4Pin CAN cable to the CAN 1 port of the flight controller(one at a time), and conduct the following procedure. Select "install firmware" from Mission Planner and load the latest copter or plane firmware.

After successful loading, select the autopilot SLCAN COM port with 115200 baud rate and Connect and then go to "Config/Tuning > Full Parameter List" and modify the following parameters:

CAN_D1_PROTOCOL:1 set virtual driver of CAN 1 to DRONECAN

CAN_D2_PROTOCOL:1 set virtual driver of CAN 2 to DRONECAN

After successful loading, select the autopilot SLCAN COM port with 115200 baud rate.

**Do not click connect . **

Then Go to "Initial Setup - Optional Hardware - UAVCAN", click "SLCan Mode CAN1".

When the device settings of Here 3 / Here 3+ pop-up, click "Parameters" from the right.

In parameter setting page, change uavcan.node_id to 0-125. Click before entering a value. Then, click "Commit Params" to save the changes and completed manual CAN id allocation.

2. Here 3 / Here 3+ firmware upgrade

Please update Mission Planner to the version indicated below(1.3.74) or higher:

Be aware that the following steps should be done when there is only 1 GPS module connected to autopilot. Connect the HERE3 CAN connector to CAN 1 port on autopilot. Connect to Mission Planner and go to “UAVCAN” tab. Click “SLCan Mode CAN 1” to load CAN GPS status. Click “Menu>Update” to check available updates. Update the HERE3 firmware.

(The following procedure is using Here 3 firmware upgrade as an example. The other Here series GPS can also refer to this procedure.)

After clicking “Update”it will ask whether to search update from the Internet. Click “Yes”. (Automatically searches for upgraded to the latest stable version firmware)

Check firmware version after upgrade.After the upgrade, check whether the version is successfully upgraded.

If “no available updates” appears when searching updates. Please turn off your firewall in the system setting and try again.

3. Modify Here 3 GNSS constellations

Through the following steps, GNSS constellations being used by HERE 3 can be selected. It requires HERE 3 to be v1.6 or later. Updating instructions are mentioned in “HERE 3 Firmware Update” section above.

Be aware that the following steps should be done when there is only 1 GPS module connected to autopilot. Connect the HERE 3 CAN connector to CAN 1 on autopilot. Connect to Mission Planner and go to “UAVCAN” tab. Click “SLCan Mode CAN 1” to load CAN GPS status.

After verifying the firmware has already updated to latest, click “Menu – Parameters to enter the setting:

gnssConfig = 8 for BeiDou

gnssConfig = 9 for GPS+BeiDou

gnssConfig = 97 for GPS+GLONASS+QZSS

When done, click “Write Params” and “Commit Params” at the righthand side.

4. HERE3 u-blox Chip Firmware Update

Here is 3 + U-Blox firmware update method will be released when a new firmware comes out for the M8P-2, the here3+ has the latest firmware at launch, and we will update here if a newer version comes out.

The u-blox chip firmware update can be completed only when HERE 3 is updated to latest version. Please follow the instructions in section “HERE 3 Firmware Update” to update your HERE 3 firmware to the latest version.

This instruction uses u-center GUI from u-blox, the correct version should be v20.10 or later:

Download the u-blox chip firmware. (The latest firmware for u-blox M8P chip is v1.4 when this guide is written):

u-blox M8P chip firmware: https://www.u-blox.com/en/product/neo-m8p-series#tab-documentati: https://www.u-blox.com/en/product/neo-m8p-series#tab-documentation-resources

passThrough = 0 Standard mode

passThrough = 1 Connect to u-center for parameter review

passThrough = 2 Connect to u-center for firmware update on u-blox chip

After downloading the firmware, connect to Mission Planner. Go to UAVCAN tab and modify the parameter “passthrough” to “2”. When done, click “Write Params” and “Commit Params” at the righthand side.

Click “Menu > Restart”. After that, uptime should be reset to “00:00:00”.

Click “Menu > CANPassThrough”. Set TCP port to “500” then click “OK”.

Open u-center and connect it (Receiver > Connection > Network connection > New.).

Open “Firmware Update Utility” (Tools > Firmware Update.) and set the following:

Click “GO” at the bottom-left corner to start firmware flashing. Wait until it is finished.

After update completed, connect to Mission Planner. Go to “UAVCAN” tab. Modify the parameter “passThrough” to “0” then write and commit.

HERE 3 will now work normally.

Here is 3 + details to follow as this feature gets expanded

The u-blox chip Parameter Checking can be completed only when Here 3 / Here 3+ is updated to latest version. Please follow the instructions in section “HERE 3 Firmware Update” to update your HERE 3 firmware to the latest version.

The u-center must be on v20.10 or later:

Connect to Mission Planner and go to “UAVCAN” tab. Modify “passThrough” to “1”.

Click “Menu > CANPassThrough”. Set TCP port to 500 and click “OK”.

Open u-center and connect it (Connect > Network Connection > new).

When connected, parameters and messages can be viewed in u-center.

When finished reviewing, go back to Mission Planner and set “passThrough” to “0”.

Here 3 mit iStand Mast GNSS M8P RTK- GPS Modul für The Cube Pixhawk 2.1Premium-Modellbau
Here 3+ mit iStand Mast GNSS M8P RTK- GPS Modul für The Cube Pixhawk 2.1Premium-Modellbau
Here 3+ & Here+ RTK GNSS (M8P-2) für Pixhawk 2.1 - Set Rover + BasisPremium-Modellbau
Here 3+ & Here+ RTK GNSS (M8P-2) für Pixhawk 2.1 - Set Rover + Basis im Premium-Modellbau Shop
Hex HX4-06175 - Here iStand Here3 - Standfuß / Mast für Here 3 GPS Modul im Premium-Modellbau Shop
Hex HX4-06175 - Here iStand Here3 - Standfuß / Mast für Here 3 GPS ModulPremium-Modellbau
Logo
Logo
Logo
Logo